Implementation of Simultaneous Localization and
Mapping on a Differential Drive Robot

Zachary Serocki
Dept. of Robotics Engineering
Worcester Polytechnic Institute
Worcester, United States of America
zdserocki@wpi.edu

Benjamin Penti
Dept. of Robotics Engineering
Worcester Polytechnic Institute
Worcester, United States of America
bjpenti @wpi.edu

Abstract—Particle Filter Simultaneous Localization and Map-
ping was implemented on a differential drive robot using the
Robot Operating System (ROS) framework. These methods were
implemented to allow the robot to map a static maze, then later be
capable of localizing itself when placed within a random location
in the maze. A* path planning was implemented to allow the
robot to navigate the maze efficiently both during uninformed
and informed navigation. The robot used was a TurtleBot 3,
equipped with a LIDAR sensor and differential drive.

Index Terms—SLAM, Pure Pursuit, Differential Drive, Particle
Filter, A*, Graph Search

I. INTRODUCTION

The TurtleBot was required to complete two distinct tasks,
first exploring the maze until all frontiers were explored, while
building a map. Then, using the previously constructed map,
the robot was moved to a random location, and the robot was
instructed via RVIZ to move to a specific location on the map.
Two main SLAM packages were used to allow for informed
and uninformed navigation. The Gmapping package was used
during the mapping phase to construct a map using LIDAR
readings, and it uses a Particle Filter to localize during motion.
The AMCL package is a particle filter localization package
that when given a map, determines the likely location of the
robot. These packages were implemented to allow the robot
to construct a map of an unknown environment, then navigate
it.

II. METHODS

1) The robot was moved to a random location in the maze.
The robot, frontier_id, Gmapping, path_planner, and
pure_pursuit nodes were initialized.

2) The robot begins constructing a map and determining its
frontiers for exploration. The frontiers are ranked and the
robot constructs a path to the best frontier.

3) The robot then moves to that frontier, and then repeats
the process. The mapping stage is complete when the
robot no longer has any viable frontiers.

Sarah Listzwan
Dept. of Robotics Engineering
Worcester Polytechnic Institute
Worcester, United States of America
salistzwan @wpi.edu

Alexander Kraemling
Dept. of Robotics Engineering
Worcester Polytechnic Institute
Worcester, United States of America
ajkraemling @wpi.edu

4) The nodes are then deactivated, and the robot is moved
to a random location in the map.

5) The robot, AMCL, path_planner, frontier_id, and the
pure_pursuit nodes are then activated. When the correct
location on the map is marked in RVIZ, the robot begins
to determine its location in the map.

6) Once the robots location is determined to an acceptable
level of certainty, the robot plans a path to the goal
location and navigates there

III. RESULTS
A. Architecture

The code base was organized into a number of nodes, each
handling a distinct process. The nodes were connected via
topics and services, allowing effective communication while
maintaining modularity of the code (See Figure 1).

Robat

Subscribers

path_planner.py

Jemd_vel : Twist o Subscribers
Publishers p—— /Tinished_path : Pose
fodom : Path Publishers
p~ /scan :@ LaserScan /~— /planned_path : Path
pure_pursuit.py Services
Subscribers /get_frontiers :
FrontiersData -> GridCells
P /scan : LaserScan
Jodom : Odometry
frontier_id.py
A /planned_path : Path
Services
Publishers /get_frontiers :
Jemd_vel @ Tuist FrontiersData -> GridCells
o

/finished_path : Pose

Fig. 1. Code Architecture Diagram

The Robot node publishes odometry and LIDAR Scan
information to pure_pursuit, Gmapping, and AMCL. The

path_planner node requests the current map using a map
service. When it requests the map, it enlarges the walls
of the map then requests frontiers to be identified via the
get_frontiers service. The Frontier Identification Node com-
putes the frontiers when requested by the get_frontiers service.
The frontiers are computed and sorted based on quality. The
path_planner node then receives these sorted frontiers and
plans a path from the current location of the robot provided by
the pure_pursuit node, to the goal frontier. This path is then
sent to the pure_pursuit node. The pure_pursuit node navigates
between these nodes by sending command velocity messages
to the robot. The pure_pursuit node also keeps track of the
closes object in front of it, to provide an e-stop if the robot is
close to crashing. Once pure_pursuit has finished navigating
its path, it sends its current location to the path_planner node
to ask for a new one.

During informed navigation the robot starts in localization
state in the pure_pursuit node. The pure_pursuit node will not
publish its start location to begin the path planning process
until the covariance of its position has dropped below a
threshold. There are two covariance thresholds that are used to
determine the behavior of the robot in its localizing state. The
first threshold moves the robot from localization in place, to
localization by spinning. Once the covariance drops below the
second threshold, the robot moves into navigation state. The
robot will then publish its current location, which will allow
the path planning control flow to begin. Once the location has
been chosen on RVIZ using the Goal Position feature, then the
path will be constructed and the robot will navigate through
the path.

B. Localization

The robot localizes during uninformed navigation using
the odometry process model in the Gmapping particle filter.
The Gmapping particle filter is used to update that frame as
the wheels slip or as the IMU drifts overtime. Within the
pure_pursuit node, the robot’s current pose is kept in map
frame, using a TransformListener. The Gmapping package
publishes a transformation between the odom and the map
frame to account for the shortcomings of odometry. This
allows the planning of the paths to continue to occur in the
map frame, even after the odometry and map frames drift over
time.

During informed navigation, the robot localizes using the
AMCL package. The AMCL Package publishes the most
likely location of the robot as well as its covariance. Once
the covariance in the robot’s position is reduced to a certain
level, the robot begins planning its path.

The robot begins in a localization state, when the robot
localizes in place until the covariance dips below a threshold.
The robot then begins spinning to continue to localize. Once
the robots covariance dips below another threshold, the robot
moves into its navigating state. In the navigating state, the
robot plans and executes its path to a specified target.

C. Frontier Identification

The map is stored in an occupancy grid. Each cell in the
occupancy grid contains a number that indicates its status.
Above a threshold, the cell is occupied, below this threshold,
the cell is unoccupied. If the value is -1 then the cell is
unknown. The frontiers are defined by the boundary between
unoccupied and unknown cells.

The frontiers are determined using edge detection in the
CV2 library, a computer vision library. The unknown areas
and the unoccupied ares are turned into their own separate
binary masks. The unknown area is dilated by one pixel. A
intersection is performed on the binary masks to find the
intersection of unknown areas and the free space. The con-
nected components are then isolated from this image using the
CV2, ConnectedComponentsWithStats function. This function
identifies the connected components and produces their height,
width, and area. To determine the centroids of these frontiers,
the width and the height of each frontiers are compared to
determine which of these axes is the major axis. The dominant
dimension is then used to determine the center in that axis. The
array is then searched in that row/column to find the centroid
(See Figure 2).

Fig. 2. Frontier Centroids (Shown in Cyan Blue)

These centroids are stored, along with the area, and passed
to the sorting function. The sorting function sorts the centroids
via a linear combination of the frontier lengths (areas), dis-
tance from the robots current position, density (how clustered
the frontiers are), and distance from the start position. The
distance from the robots current position is most heavily
weighted to allow for smaller paths to be generated, making
map traversal more efficient.

D. Path Planning

Path planning begins by receiving a current location of
the robot from the pure_pursuit node. This indicates that

pure_pursuit has completed its last path and would like a new
one. The path_planner then requests a map from Gmapping,
and computes the configuration space (c-space) of this map.
This entails enlarging the walls of the map by the radius of
the robot so the robot can be treated as a point in the center
of the robot, without worry of the robots sides brushing the
walls (See Figure 3).

| iﬁﬁj

Fig. 3. Map Before and After C-Space Operation

In practice, this c-space must be adjusted to allow for
consistent path planning. The walls must not be enlarged by
the full radius of the robot to prevent frontiers from being lost
due to inadequately large grid size. The robot is prevented
from running into walls by implementing a predictive collision
algorithm on the drive controller level, as well as path planning
though the center of the open space. The unknown space is
also enlarged by the same amount to prevent the frontiers from
being located directly on the border of unknown space. This
could cause the robot to run into the wall if the unknown space
were a wall.

This c-spaced map is then passed to the frontier iden-
tification node, and when the frontiers are returned, path
planning can commence. Given the current location and the
goal location of the robot, the path can be computed. A*
search is used to find the ideal path from the start to the
end of the map [1]. A* search provides a fast and effective
search algorithm that provides an optimal path by taking into
account both cost to get to the cell and a heuristic, which in
this case is the Euclidean distance from the current node to the
goal. The cost was defined as a combination of the Euclidean
distance from the start, as well as a cost for the distance to
the nearest wall. This causes A* to plan a path in the center
of the map, rather then taking simply the shortest path, which
could cut close to walls and cause crashes due to small errors
in mapping,localization, or pure_pursuit (See Figure 4).

Fig. 4. A* With(left) and Without(right) Wall Avoidance Costs

This path produced by A* is then converted into global
coordinates and sent to the drive controller (pure_pursuit) for
actuation.

E. Drive Control

The drive controller in use is a Pure Pursuit controller. This
has many advantages over a rotate-drive-rotate controller. The
Pure Pursuit controller allows the robot to cut corners in the
path, as well as minimize time spent turning. It also reduces
the error in the final position as small turning errors in the
rotate-drive-rotate can cause large errors when driving large
distances.

The Pure Pursuit controller maps the path as a series of line
segments. The look-ahead distance is set and the intersection
of the path with a circle of that radius is driven towards by
the robot. This is repeated continuously until the robot reaches
the end of the path.

The Drive Controller also utilizes a predictive collision
algorithm, to prevent the robot from crashing into unforeseen
objects. The robot monitors the distance of the LaserScans
produced in the front 120° of the robot. If the smallest
LaserScan is less than 13 cm, then the robot is automatically
stopped, and it requests a new path, which requires the c-
spaces to be recomputed. This allows the robot to adapt
to unexpected environmental variables, or small errors in
localization or mapping.

IV. DISCUSSION

This lab project aimed to implement SLAM on a differential
drive TurtleBot equipped with a LIDAR sensor to allow for
navigation through a maze. Various techniques were integrated
to allow this robot to functionally navigate and map in the real
world, adapting to imperfect sensor readings and odometry.

A. Robot Performance

1) Mapping: The robot was able to reliably map the field
given the field had consistency floor conditions, and the robot
could physically fit between all obstacles in some way. This
allowed the robot to navigate and map the field, until all
unknown frontiers were explored. If the field contained a path
that the robot could not physically fit through, the frontier
would be eliminated by c-spacing and would not be explored.

The inconsistencies in odometry were compensated for by
transforming the odometry frame into the map frame, and
executing all planning and actuation from the map frame.

2) Informed Navigation: The robot is able to localize
within 15-20 seconds in the map. Once localization has
occurred and the user has chosen the desired end point on
the map, the robot navigates to the end point. If the robots
covariance in position rises high enough, the robot returns to
localizing mode. In practice this has rarely occurred as the
robot was driven slow enough to reliably localize in the map.

B. Techniques for Improved Reliability

To improve reliability in the real world, various tech-
niques were implemented including early path exit, c-space
adjustments and an collision avoidance functionality. An early
path exit was implemented into the path_planner node. This
prevents the full path from being sent to the robot during the
mapping phase. This prevents the robot from getting too close
to the unknown space, which could be a wall, and detrimental
to complete the path. This early path exit allows the robot
to move though most of the path, but by stopping before
reaching the end, the robot will have more information about
its surroundings and can then make a more informed decision
on if it would like to continue in the same direction, or if all
the unknown space in that area had already been mapped.

In order to prevent losing frontiers due to the inaccuracy of
using a map of grid cells, we ensured our c-space was smaller
than the radius of the robot. Although this does create the
possibility of the robot brushing the wall, this is overcome
by developing a drive controller level predictive collision
algorithm.

The collision predictive alert was created as a map-
independent technique for preventing collisions caused by a
change in the environment, or an error in the mapping or
localization. This technique allows the robot to stop and re-
evaluate its environment when it comes close to running into
an obstacle. Allowing the robot to adjust its path based on
current conditions, and plan a better path around the obstacle.

C. Future Work

To improve this implementation, a few features could be
implemented, including an improved drive controller, as well
as an improved map-independent wall avoidance algorithm.

A drive controller with better tuned turning gains and
improved speed, as well as a Model Predictive Path Integral
Controller could be implemented [2]. This is a type of Model
Predictive Control (MPC) scheme that allows for the ideal
inputs to the command velocity to be determined to allow the
robot to follow the path most closely. These are determined
by choosing random inputs and simulating system response
over a given number of steps. This process is repeated a large
number of times and the input with the best response is fed
into the real robot. Given the ROS node structure, this control
could be implemented on a dedicated computer, providing the
increased computing resources needed while still integrating
into the existing structure.

To avoid walls and dynamic obsticals more effectively
without having to re-plan a path, an Artificial Potential Fields
approach could be used [3]. This approach simulates the robot
as a particle with the same charge as the obstacles. The robot
aims to seek the path of least resistance, which is as far
away from the obstacles as possible. This could be used to
prevent the robot from hitting the walls when there are errors
in the mapping or localization, or an unexpected change in the
environment. This could be integrated into the drive controller,
allowing for a map-independent method for avoiding obstacles.

V. CONCLUSION

In this project we implemented a robot that can au-
tonomously explore and generate a map, as well localize in
that map. SLAM was implemented within the ROS framework
on a TurtleBot 3 robot. The Gmapping and AMCL packages
were used to generate and localize in the map without prior
knowledge of the environment.

Thanks to the various techniques we implemented, our
robot was able to meet all criteria, including mapping the
maze without making collisions with the wall, driving back to
start position, and being able to adequately localize anywhere
within the map.

REFERENCES

[11 P. E. Hart, N. J. Nilsson and B. Raphael, ”A Formal Basis for
the Heuristic Determination of Minimum Cost Paths,” in IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100-107, July 1968, doi: 10.1109/TSSC.1968.300136. keywords:
Costs;Mathematical ~programming;Minimization —methods;Functional
programming;Automatic control;Minimax techniques;Gradient
methods;Chemical technology;Automatic ~ programming;Instruction
sets,

[2] W. Wu, Z. Chen and H. Zhao, "Model Predictive Path Integral Control
based on Model Sampling,” 2019 2nd International Conference of
Intelligent Robotic and Control Engineering (IRCE), Singapore, 2019,
pp- 46-50, doi: 10.1109/IRCE.2019.00017.

[3] Y. Li, B. Tian, Y. Yang and C. Li, "Path planning of robot based on
artificial potential field method,” 2022 IEEE 6th Information Technol-
ogy and Mechatronics Engineering Conference (ITOEC), Chongging,
China, 2022, pp. 91-94, doi: 10.1109/ITOEC53115.2022.9734712. key-
words: Mechatronics;Simulation;Conferences;Path planning;Information
technology;Robots;Matlab;artificial potential field method;local mini-
mum;safe distance;time distance detection method, keywords: compo-
nent;Model Predictive Path Integral;Model Sampling;Robotics,

APPENDIX
A. GitHub Release
GitHub Release Link

B. Contributions

Zachary Serocki: Pure Pursuit Controller, wall avoidance,
Localization, code architecture design, tuning and debugging
Sarah Listzwan: Frontier Identification, A* Distance from
Wall, E-stop, path planning, tuning and debugging
Alexander Kraemling: Frontier prioritization, A*, pure pur-
suit, general debugging/ tuning, architecture design
Benjamin Penti: Localization, A*, debugging and tuning

https://github.com/RBE300X-Lab/RBE3002_B24_Team12/releases/tag/lab4-team12

	Introduction
	Methods
	Results
	Architecture
	Localization
	Frontier Identification
	Path Planning
	Drive Control

	Discussion
	Robot Performance
	Mapping
	Informed Navigation

	Techniques for Improved Reliability
	Future Work

	Conclusion
	References
	GitHub Release
	Contributions

