
Four Degree of Freedom Articulated Arm Control
Zachary Serocki

Dept. of Robotics Engineering
Worcester Polytechnic Institute

Worcester, United States of America
zdserocki@wpi.edu

Sarah Listzwan
Dept. of Robotics Engineering
Worcester Polytechnic Institute

Worcester, United States of America
salistzwan@wpi.edu

Alexander Kraemling
Dept. of Robotics Engineering
Worcester Polytechnic Institute

Worcester, United States of America
ajkraemling@wpi.edu

Abstract—Control for a four degree of freedom articulated
arm was implemented to allow the robot to detect and sort five
different colored balls. Forward Kinematics was implemented
to determine the position of the end effector of the robot in
task space. Differential Kinematics was then implemented to
allow for conversion between joint velocities and end effector
velocities. Inverse Kinematics was implemented to determine the
joint angles required to reach a point Task Space. Trajectory
planning functions were created to allow for quintic task space
trajectory planning. Camera Vision was then implemented to
allow the robot to recognize and differentiate between colored
balls in the task space. A state machine was then implemented
to determine the location of the objects, generate a trajectory to
an object, move it to the correct color bin, and return to grab
the next object.

Index Terms—forward kinematics, inverse kinematics, articu-
lated arm, differential kinematics, computer vision

INTRODUCTION

A. Background and Motivation

To implement color sorting of objects using a four degree
of freedom (4-DOF) articulated arm, layers of control systems
were constructed. To begin the robot controller was capable
of writing positions in degrees, or velocities in degrees per
second to each of its joints. The robot contains four rotational
joints. The robot was controlled using the DYNAMIXEL SDK
with MATLAB.

On top of this base control layer, forward kinematics, differ-
ential kinematics, inverse kinematics, and trajectory planning
were implemented to allow for task space control of the end
effector of the robot. To allow for object sorting, the robot
must be capable of recognizing and determining the position
of different colored objects. A camera was trained on the
checkerboard base and five different colored objects (red,
orange, yellow, green, and blue). The checkerboard was used
to determine the real world position of the objects.

To achieve the goal, these techniques were integrated to
allow for quintic task space trajectory generation from the end
effectors original position to the goal object, and from the goal
object to its respective collection bin.

METHODS

1) Implement Forward Kinematics by determining Denavit-
Hartenberg parameters, developing intermediate trans-
formation matrices, and post multiplying to determine
world to end effector transformation matrix.

2) Implement Differential Kinematics by solving for Jaco-
bian matrix from Forward Kinematics transformation.

3) Implement Inverse Kinematics using a numerical
Newton-Raphson approach.

4) Develop quintic trajectory generation functions in task
space using inverse kinematics.

5) Train camera system to recognize five distinct colors,
and transform location of object in pixel space to task
space

6) Combine all previous steps into a state machine to
recognize, grab, and deposit objects in their colored
containers.

RESULTS

B. Forward Kinematics

To determine the location in task space of the end effector
of the robot using the joint angles of the robot, the forward
kinematics of the robot was computed. As shown in Figure 1,
the reference frames for the robot were defined using the
Denavit-Hartenberg convention [1]. DH parameters were then
determined for each link (See Table I).

Fig. 1. Reference Frames of Robot



Link θ (degrees) d (mm) a (mm) α (degrees)
0 0 36.076 0 0
1 θ1 96.326−

36.076
0 -90

2 tan−1
(

24
128

)
−

90 + θ2

0
√
242 + 1282 0

3 90 −
tan−1

(
24
128

)
+

θ3

0 124 0

4 θ4 0 133.4 0
TABLE I

DENAVIT-HARTENBERG PARAMETERS FOR EACH LINK

The DH parameters where then used to determine the
intermediate transformation matrices using the a Z-axis rota-
tion, Z-axis translation, X-axis translation, and X-axis rotation
transformation matrix.

cθ −sθcα sθsα acθ
sθ cθcα −cθsα asθ
0 sα cα d
0 0 0 1


These intermediate transformation matrices were post mul-
tiplied to determine the base to end effector transformation
matrix (See Figure 16). This was computed symbolically in
MATLAB, then converted to a MATLAB function during
startup. The joint angles can then be plugged in to determine
the numerical transformation matrix for a given set of joint
angles.

C. Differential Kinematics

To determine both the linear and angular velocities of the
end effector given the joint angle velocities, the Jacobian
matrix must be calculated.

ẋ
ẏ
ż
ωx

ωy

ωz

 = J(θ)


θ̇1
θ̇2
θ̇3
θ̇4


The Jacobian matrix is determined using the forward kine-

matics calculated above. The Jacobian is a 6 by n matrix with
n representing the number of joints of the robot.

∂x
∂θ1

∂x
∂θ2

∂x
∂θ3

∂y
∂θ4

∂y
∂θ1

∂y
∂θ2

∂y
∂θ3

∂y
∂θ4

∂z
∂θ1

∂z
∂θ2

∂z
∂θ3

∂z
∂θ4[

ẑ1
] [

ẑ2
] [

ẑ3
] [

ẑ4
]


This matrix is precomputed symbolically on robot startup, and
transferred to a MATLAB function for speed during use. The
forward kinematic transformation matrix (See Figure 16, TEE

0 ,
is used to compute the upper half of the Jacobian by taking
the partial derivative of the positional components with respect
to each joint. The lower half of the Jacobian is computed
by taking the ẑi vector from their respective transformation
matrices (See Figures 12-15) (ie. ẑ1 is first three rows of the

third column of T 1
0 , and ẑ2 is from T 2

0 and so on). The full
symbolic Jacobian can be found in the Appendix, Figure 17.

To determine the joint velocities required to achieve an
end effector scalar speed, the inverse of the Jacobian can be
computed. controlling


θ̇1
θ̇2
θ̇3
θ̇4

 = J(θ)−1


ẋ
ẏ
ż
ωx

ωy

ωz


This allows for end effector speed control to be imple-

mented. The speed of the end effector can be determine, and
multiplied by the inverse of the Jacobian to determine the joint
velocities needed to achieve that speed.

D. Inverse Kinematics
To determine the joint angles required for the robots end

effector to reach a point in space, the inverse kinematics of
the robot was computed. The Newton-Raphson root finding
method was employed [2]. This method was chosen over an
Algebraic method as it was found to be faster on average then
the Algebraic inverse kinematic solution (See Figure 2).

Fig. 2. Inverse Kinematic Algebraic vs. Numeric Compute Time

Numeric Inverse Kinematics was implemented by defining
the error to be the difference between the ideal end effector
position and the current end effector position (given a guess
of the joint angles).

e(qguess) = fk(qguess)− pdesired

To determine the change in joint angles to approach the
correct solution, the psuedoinverse of the Jacobian evaluated at
the previous joint angle guess is used (psuedoinverse because
the Jacobian is a non-square matrix). This is then multiplied
by the error in the end effector to determine the change in
joint angles.

∆q = J(qguess)
†e(qguess)



The previous joint angles are then incremented by this change
in joint angles.

qnewguess = qguess +∆q

This process is then repeated until the error e(qguess) is
below 1 mm, or a cap of 50 iterations. Experimentally it was
found that all solutions were found to converge within 50
iterations, given an initial guess of qintial = [0o, 0o, 0o, 0o].

E. Trajectory Generation

To allow for smooth movements between objects, a quintic
trajectory function was created. A quintic trajectory is rep-
resented by a quintic polynomial where beginning and end
angles, velocities, and accelerations are specified. A system
of equations is solved to determine the quintic polynomial
coefficients for each joint.

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

q(t0) = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0

q(tf ) = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f

v(t0) = a1 + 2a2t0 + 3a3t
2
0 + 4a4t

3
0 + 5a5t

4
0

v(tf ) = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f

a(t0) = 2a2 + 6a3t0 + 12a4t
2
0 + 20a5t

3
0

a(tf ) = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f

Insert the equations into augmented matrix form



1 t0 t20 t30 t40 t50 q(t0)
1 tf t2f t3f t4f t5f q(tf )

0 1 2t0 3t20 4t30 5t40 v(t0)
0 1 2tf 3t2f 4t3f 5t4f v(tf )

0 0 2 6t0 12t20 20t30 a(t0)
0 0 2 6tf 12t2f 20t3f a(tf )





a0
a1
a2
a3
a4
a5
1


Use Gauss Jordan elimination to the augmented matrix to
make it reduced row echelon form

rref(



1 t0 t20 t30 t40 t50 q(t0)
1 tf t2f t3f t4f t5f q(tf )

0 1 2t0 3t20 4t30 5t40 v(t0)
0 1 2tf 3t2f 4t3f 5t4f v(tf )

0 0 2 6t0 12t20 20t30 a(t0)
0 0 2 6tf 12t2f 20t3f a(tf )

)


a0
a1
a2
a3
a4
a5
1


Multiply the reduced augmented matrix by the coefficient
vector 

1 0 0 0 0 0 k0
0 1 0 0 0 0 k1
0 0 1 0 0 0 k2
0 0 0 1 0 0 k3
0 0 0 0 1 0 k4
0 0 0 0 0 1 k5





a0
a1
a2
a3
a4
a5
1



an is a solely a function of kn
a0 0 0 0 0 0 k0
0 a1 0 0 0 0 k1
0 0 a2 0 0 0 k2
0 0 0 a3 0 0 k3
0 0 0 0 a4 0 k4
0 0 0 0 0 a5 k5


∴ a⃗ = k⃗ 

a0
a1
a2
a3
a4
a5

 =


k0
k1
k2
k3
k4
k5


This trajectory planning is implemented in task space by

solving for a cubic Bezier curve with control points used to
avoid obstacles in the same plane. During motion, the current
time vector is multiplied by the coefficient vector to determine
the current parametric parameter, which is then input into
the Bezier curve to find the end effector in task space. This
position is then run through inverse kinematics to determine
the joint angles to write the arm to to reach this point in space.
This process is repeated to produce the trajectory.

[
t
]
=

[
a0 a1 a2 a3 a4 a5

]

1
t
t2

t3

t4

t5


peexpeey
peez

 = (1− t)3p⃗0 + 3t(1− t)2p⃗1 + 3t2(1− t)p⃗2 + t3p⃗1

This quintic polynomial planning produces a smooth and
continuous trajectory that starts and stops with zero velocity
and acceleration. This is then input into the parametric Bezier
equation to find the current target point that is then ran through
inverse kinematics to find the current joint angles. Beziar
trajectory was tested and implemented to allow the robot to
allow the robot to grab objects without bumping into other
objects. The quintic trajectory was used to move along this
trajectory.

F. Camera Vision

To allow the robot to interact with its environment, a camera
was used to allow the robot to determine the location of objects
of interest. A checkerboard was placed in front of the robot
to facilitate this. To determine the location of an object in the
Task Space, three transformations must be computed, from
camera space to pixel space (intrinsic camera matrix), from
pixel to checkerboard space, and from checkerboard space to
task space.

The intrinsic calibration and pixel-to-checkerboard space
matrices are computed automatically by MATLAB. Many



pictures of the checkerboard are taken from different vantage
points. The checkerboard provides a large number of known
features and a known origin. This allows the focal length,
principal point, and distortion coefficients to be computed.
The transformation matrix between the pixel space and the
checkerboard board is computed by recognizing the origin of
the checkerboard, and computing the transformation matrix
from pixel space to checkerboard space. A pinhole approx-
imation is used to compute this transformation (See Figure
3).

Fig. 3. Pinhole Camera Approximation

The final transformation from checkerboard space to task
space was computed by inspection. The transformation matrix
consists of a rotation matrix that was computed by inspection,
and a translation vector that was computed by measuring
offsets.

TCheck
0 =


xChecker · x0 yChecker · x0 zChecker · x0 ∆x
xChecker · y0 yChecker · y0 zChecker · y0 ∆y
xChecker · z0 yChecker · z0 zChecker · z0 ∆z

0 0 0 1



The coordinate frames were assigned both to the checker-
board as the base of the robot (See Figure 4) and the
transformation matrix, TChecker

0 computed.

Fig. 4. Checkerboard and Base Frames

TChecker
0 =


0 1 0 99
1 0 0 −114
0 0 −1 0
0 0 0 1



The position in the task space can then be computed
by multiplying the transformation matrix by the position in
checkerboard space.


xtask

ytask
ztask
1

 = TChecker
0


xcheck

ycheck
zcheck

1



To determine the centroids of the objects in pixel space and
determine their color. The following imaging processing flow
was developed: mask everything except for checkerboard →
convert image to HSV space → generate threshold images for
each color (red, orange, yellow, green, blue) → detect edges →
fill closed shapes → erode images → determine the centroid
of any connected areas with an area of larger then 100 pixels.

The area outside of the checkerboard was masked by
determining the locations of the corners of the checkerboard,
adding the distance of one checker (to ensure the outer row
of checkers was included), and creating a binary mask to set
all pixels outside of the checkerboard to black. This prevents
object recognition in areas the robot cannot reach (See Figure
5).



Fig. 5. Image with Masking for Area Outside of Workspace

The HSV (hue, saturation, value) colorspace was chosen
because it was experimentally determined to provide the best
color distinction between our red, orange, yellow, green, and
blue objects.

Threshold images were created for each color, with all
objects of the color shown in white, and the rest of the image
in black. The edges were detected using a log algorithm as it
was determined to be more sensitive then a Sobel filter (See
Figure 6).

Fig. 6. Orange Image Edge Detection

The closed shapes generated by the edge detection were
then filled (See Figure 7).

Fig. 7. Filled Shapes Images

The areas were eroded to decrease the area of small artifacts.
The remaining areas were filtered by area to ensure artifacts
were filtered out. The centroids of these areas in pixel space
was then returned (See Figure 8).

Fig. 8. Centroids in Pixel Space

This pixel space centroids can then be converted into task
space using the transformations described above. However,
these task space positions must be adjusted to ensure correct
3D coordinates. When mapping a 2D image into 3D, the
position of the ball is determined to be farther away from the
camera then it actually is, because the object has a z-height
(See Figure 9).

Fig. 9. Task Space Compensation

offset =
r

H

√
x2
c + y2c

xoff = offset ∗ cos(θ)

yoff = offset ∗ sin(θ)

G. Architecture

To allow for support for future expansion and maintainabil-
ity of code base, and object oriented framework was followed.
The following classes were created to handle various functions
of the robot:

1) VirtualRobot: a Parent Class of Robot, allowing for
trajectories to be run in a simulation (liveplot) before
running on robot hardware



2) Robot: handles commands that require the physical robot
hardware to run, including joint angle reading and writ-
ing functions, estop functions, and runnable trajectory
functions

3) KinematicFunctions: handles forward and inverse posi-
tion and velocity kinematic functions, that do not require
the robot to run

4) TrajPlanner: handles generating coefficients for trajec-
tory generation

5) Camera: handles functions that require the camera to
run, including calibration scripts, transformation scripts,
and image processing

H. Integration

The to integrate the aforementioned functionalities into an
object sorting robot, a state machine was constructed (See
Figure 10).

Fig. 10. State Machine Diagram

This implementation consisted of five states, while checking
the camera every loop to keep the list of balls updated:

1) Idle: When robot does not see any objects, returns to
home configuration

2) Go to Object: Generate a Bezier trajectory between
the current location and the object position, and follow
trajectory

3) Pick up Ball: Close gripper around object
4) Move to Container: Based on color of ball, generate

Bezier trajectory between current position and respective
container, and follow trajectory

5) Deposit Ball: Open Gripper
To implement active object tracking, a script was written

to determine the task space positions of the object in the task
space. A z-axis offset was added to this position and it was
run through inverse kinematics to determine the joint angles to
reach the point over the ball. The robot was sent to interpolate
to this point. If the ball was observed to remain stationary, then
the robot was instructed to approach and grab the ball.

Other objects were tested for collection by training the robot
on other colors of blue, and presenting the robot with a dark

blue marker cap. The robot recognized and sorted the market
cap with the other blue objects.

DISCUSSION

I. Forward Kinematics

The forward kinematics of the robot were developed and
refined to determine the task space position of the end effector
of the robot given the joint angles of the robot. The Denavit-
Hartenburg convention was used to determine the interme-
diate transformation matricies. These were precomputed and
transformed into MATLAB functions to improve speed of
use. The speed of the forward kinematic functions is of great
importance because the forward kinematics are called on every
iteration of inverse kinematics (forward kinematics could be
called up to 50 times per inverse kinematic call).

J. Differential Kinematics

The differential kinematics of the robot were determined
by computing the Jacobian symbolically, then storing it as a
MATLAB function. The Jacobian allows for determination of
joint space velocities required to produce a specified end ef-
fector velocity, and vice versa. This function was precomputed
on start up and stored as a fast MATLAB function, because it
is also called on every iteration of inverse kinematics.

K. Inverse Kinematics

The inverse kinematics of the robot was computed numer-
ically for decreased complexity from an algebraic approach.
The Newton-Raphson root finding method was used. It is an
iterative approach that was found to converge upon joint angles
within fifty iterations. This method also does not require an
α (angle of the end effector from horizontal) to be specified.
This allows for reduced complexity when path planning this is
because for most movements alpha can be a range of values
for the trajectory to execute correctly however when alpha
is specified it can lead to crashes in the algebraic inverse
kinematics since the robot cant reach that point at that alpha,
this is primarily prevalent for the extremes at the edge of the
workspace and close to the origin. The solution was restricted
to an elbow up configuration to allow the robot to reach more
positions.

L. Trajectory Generation

To generate trajectories between objects, a quintic trajectory
is generated for a quintic Bezier curve. The quintic trajectory
allows the robot to move smoothly, with defined start and
end velocities and accelerations along the path. The Bezier
curve was defined to allow the robot to move from object to
object without requiring setpoints, or knocking into objects.
The control points are set to vertical extensions of the target
point this ensures that the robot takes a path that goes up goes
over and goes down to the target.



M. Camera Vision

To determine the location of objects, the camera was em-
ployed to recognize colored objects. The camera was trained
on red, orange, yellow, green, and blue colored objects in HSV
space for improved differentiation. Black and while objects
could not be used because the checkerboard background is
black and white, causing the checkerboard to be recognized
as an object. The camera space position of the objects are
converted to pixel space using the intrinsic parameters of the
camera. Using the pixel space to checkerboard transformation,
the position of the object in checkerboard space was computed.
The position of the object in task space was then computed
using the transformation matrix from checkerboard space to
task space. This point was then adjusted using the known
radius of the object.

The centroids of the objects were determined using color
segmentation, and an image processing flow that was deter-
mined through experimentation. This flow was settled on as
it provides reliable object detection in a variety of lighting
conditions and provides easy color distinction. It also provided
consistently accurate centroid detection.

N. Architecture

The code base was organized following object oriented prin-
cipals to allow for future expansion. A parent class of Robot,
VirtualRobot was created to allow the robots trajectories to be
run in simulation before being run on hardware. This allows
for easy debugging without the risk of damaging the hardware.

O. Integration

The previous functionality was compiled into a state ma-
chine to allow the robot to cycle between idle, moving to
objects, picking up objects, moving to correct container, and
dropping objects. This allows the robot to sort many balls one
after another, without having to return home, minimizing the
path length of the robot. The robot sorts balls in rainbow order,
starting with red. Each of the five trained colors have their
own containers placed outside of the checkerboard. By placing
the containers outside of the checkerboard, it is masked out
and already sorted balls are excluded from future movements.
Live object tracking and additional object picking up were
implemented. The camera was trained to follow above a ball
(to prevent it from blocking the camera) until the ball remains
still, then pick it up. The camera was trained on an additional
hue of blue to allow the robot to pick up marker caps from
the field.

CONCLUSION

To implement a object sorting system using a four Degree
of Freedom articulated arm, various control techniques were
employed. Forward and inverse position kinematics were
developed to determine the joint angles from a task space
pose and vise versa. This allows the robot to interact with
its environment in task space. Forward and inverse velocity
kinematics were developed to allow for determination of joint
space velocities required to produce a task space velocity

and vise versa. This allows for end effector task space speed
control. Trajectory generation was implemented to allow the
robot to follow a smooth Bezier curve from object to object. It
also prevents strain on the motors by controlling the velocity
and acceleration on the motors. To allow the robot to interact
with its environment Camera Vision was implemented. This
allows the robot to determine the color and location of objects
in its surroundings so it can sort them. These techniques were
integrated to create a system capable of sorting five distinct
colors of objects.

REFERENCES

[1] P. I. Corke, ”A Simple and Systematic Approach to Assigning De-
navit–Hartenberg Parameters,” in IEEE Transactions on Robotics, vol.
23, no. 3, pp. 590-594, June 2007, doi: 10.1109/TRO.2007.896765.
keywords: Robot kinematics;DH-HEMTs;Service robots;Manipulator
dynamics;Motion planning;Java;Code standards;Algebra;Computational
geometry;Jacobian matrices;Denavit–Hartenberg (DH);kinematics,

[2] S. Lee, J. Lee, J. Bang and J. Lee, ”7 DOF Manipulator Con-
struction and Inverse Kinematics Calculation and Analysis using
Newton-Raphson Method,” 2021 18th International Conference on
Ubiquitous Robots (UR), Gangneung, Korea (South), 2021, pp.
235-238, doi: 10.1109/UR52253.2021.9494699. keywords: Kinemat-
ics;Manipulators;Hardware;Newton method,

APPENDIX

Code Base:
https://github.com/RBE3001-A24/RBE3001 A24 Team 5

Video:
https://www.youtube.com/watch?v=TpuRt1VqW Y

Section Contributor
Report Sarah Listzwan and Zachary Serocki
Video Alexander Kraemling

Programming Zachary Serocki, Sarah Listzwan and
Alexander Kraemling

Fig. 11. Contributions Table

https://github.com/RBE3001-A24/RBE3001_A24_Team_5
https://www.youtube.com/watch?v=TpuRt1VqW_Y



1 0 0 0
0 1 0 0
0 0 1 9016

250
0 0 0 1


Fig. 12. Symbolic T 1

0


cθ1 0 −sθ1 0
sθ1 0 cθ1 0
0 −1 0 9016

250
0 0 0 1


Fig. 13. Symbolic T 2

0


cθ1cθ2 −cθ1sθ2 −sθ1 130.23cθ1cθ2
sθ1cθ2 −sθ1sθ2 cθ1 130.23sθ1cθ2
−sθ2 −cθ2 0 48163

500 − 130.23cθ2
0 0 0 1


Fig. 14. Symbolic T 3

0


cθ4(cθ1cθ2cθ3 − cθ1sθ2sθ3)− sθ4(cθ1cθ2sθ3 + cθ1cθ3sθ2) −cθ4(cθ1cθ2sθ3 + cθ1cθ3sθ2)− sθ4(cθ1cθ2cθ3 − cθ1sθ2sθ3) −sθ1

667cθ4 (cθ1cθ2cθ3−cθ1sθ2sθ3 )

5 − 667sθ4 (cθ1cθ2sθ3+cθ1cθ3sθ2 )

5 + 8
√
265cθ1cθ2 + 124cθ1cθ2cθ3 − 124cθ1sθ2sθ3

cθ4(sθ1cθ2cθ3 − sθ1sθ2sθ3)− sθ4(sθ1cθ2sθ3 + sθ1cθ3sθ2) −cθ4(sθ1cθ2sθ3 + sθ1cθ3sθ2)− sθ4(sθ1cθ2cθ3 − sθ1sθ2sθ3) cθ1
667cθ4 (sθ1cθ2cθ3−sθ1sθ2sθ3 )

5 − 667sθ4 (sθ1cθ2sθ3+sθ1cθ3sθ2 )

5 + 8
√
265sθ1cθ2 + 124sθ1cθ2cθ3 − 124sθ1sθ2sθ3

sθ4(sθ2sθ3 − cθ2cθ3)− cθ4(cθ2sθ3 + cθ3sθ2) cθ4(sθ2sθ3 − cθ2cθ3) + sθ4(cθ2sθ3 + cθ3sθ2) 0
667sθ4 (sθ2sθ3−cθ2cθ3 )

5 − 124cθ3sθ2 −
667cθ4 (cθ2sθ3+cθ3sθ2 )

5 − 124cθ2sθ3 − 8
√
265sθ2 +

48163
500

0 0 0 1


Fig. 15. Symbolic T 4

0



cθ4(cθ2−acθ3+acθ1 − sθ2−asθ3+acθ1)− sθ4(cθ2−asθ3+acθ1 + cθ3+asθ2−acθ1) −sθ4(cθ2−acθ3+a − sθ2−asθ3+a)− cθ4(cθ2−asθ3+a + cθ3+asθ2−a) −sθ1 dcθ2−acθ1 − bsθ4(cθ2−csθ3+acθ1 + cθ3+asθ2−acθ1)
+bcθ4(cθ2−acθ3+acθ1 − sθ2−asθ3+acθ1) + ecθ2−acθ3+acθ1 − esθ2−asθ3+acθ1
cθ4(cθ2−acθ3+asθ1 − sθ2−asθ3+asθ1)− sθ4(cθ2−asθ3+asθ1 + cθ3+asθ2−asθ1) −cθ4(cθ2−asθ3+asθ1 + cθ3+asθ2−asθ1)− sθ4(cθ2−acθ3+asθ1 − sθ2−asθ3+asθ1) cθ1 dcθ2−asθ1 − bsθ4(cθ2−asθ3+asθ1 + cθ3+asθ2−asθ1)
+bcθ4(cθ2−acθ3+asθ1 − sθ2−asθ3+asθ1) + ecθ2−acθ3+asθ1 − esθ2−asθ3+asθ1

−sθ4(cθ2−acθ3+a − sθ2−asθ3+a)− cθ4(cθ2−asθ3+a + cθ3+asθ2−a) sθ4(cθ2−asθ3+a + cθ3+asθ2−a)− cθ4(cθ2−acθ3+a − sθ2−asθ3+a) 0 f − bsθ4(cθ2−acθ3+a − sθ2−asθ3+a)− ecθ2−asθ3+a

−ecθ3+asθ2−a − bcθ4(cθ2−asθ3+a + cθ3+asθ2−a)− dsθ2−a

0 0 0 1


Fig. 16. Symbolic TEE

0



−c [cθ4 (sθ1cθ2−acθ3+a − sθ1sθ2−asθ3+a)− sθ4 (sθ1cθ2−asθ3+a + sθ1cθ3+asθ2−a)] + esθ1cθ2−a + bsθ1cθ2−acθ3+a − bsθ1sθ2−asθ3+a −c [cθ4 (cθ1cθ2−asθ3+a + cθ1cθ3+asθ2−a) + sθ4 (cθ1cθ2−acθ3+a − cθ1sθ2−asθ3+a)] + ecθ1sθ2−a + bcθ1cθ2−asθ3+a + bcθ1cθ3+asθ2−a −c [cθ4 (cθ1cθ2−asθ3+a + cθ1cθ3+asθ2−a) + sθ4 (cθ1cθ2−acθ3+a − cθ1sθ2−asθ3+a)] + bcθ1cθ2−asθ3+a + bcθ1cθ3+asθ2−a −d

5
[cθ4 (cθ1cθ2−asθ3+a + cθ1cθ3+asθ2−a) + sθ4 (cθ1cθ2−acθ3+a − cθ1sθ2−asθ3+a)]

c [cθ4 (cθ1cθ2−acθ3+a − cθ1sθ2−asθ3+a)− sθ4 (cθ1cθ2−asθ3+a + cθ1cθ3+asθ2−a)] + ecθ1cθ2−a + bcθ1cθ2−acθ3+a − bcθ1sθ2−asθ3+a −c [cθ4 (sθ1cθ2−asθ3+a + sθ1cθ3+asθ2−a) + sθ4 (sθ1cθ2−acθ3+a − sθ1sθ2−asθ3+a)] + esθ1sθ2−a + bsθ1cθ2−asθ3+a + bsθ1cθ3+asθ2−a −c [cθ4 (sθ1cθ2−asθ3+a + sθ1cθ3+asθ2−a) + sθ4 (sθ1cθ2−acθ3+a − sθ1sθ2−asθ3+a)] + bsθ1cθ2−asθ3+a + bsθ1cθ3+asθ2−a −d

5
[cθ4 (sθ1cθ2−asθ3+a + sθ1cθ3+asθ2−a) + sθ4 (sθ1cθ2−acθ3+a − sθ1sθ2−asθ3+a)]

0 c [cθ4 (cθ2−acθ3+a − sθ2−asθ3+a)− sθ4 (cθ2−asθ3+a + cθ3+asθ2−a)] + bcθ2−acθ3+a − bsθ2−asθ3+a + ecθ2−a c [sθ4 (cθ2−asθ3+a + cθ3+asθ2−a)− cθ4 (cθ2−acθ3+a − sθ2−asθ3+a)]− bcθ2−acθ3+a + bsθ2−asθ3+a
d

5
[cθ4 (sθ2−asθ3+a − cθ2−acθ3+a) + sθ4 (cθ2−asθ3+a + cθ3+asθ2−a)]

0 −sθ1 −sθ1 −sθ1

0 cθ1 cθ1 cθ1

1 0 0 0



Fig. 17. Symbolic Jacobian


	Background and Motivation
	Forward Kinematics
	Differential Kinematics
	Inverse Kinematics
	Trajectory Generation
	Camera Vision
	Architecture
	Integration
	Forward Kinematics
	Differential Kinematics
	Inverse Kinematics
	Trajectory Generation
	Camera Vision
	Architecture
	Integration
	References

